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THEORY OF DEFORMATION OF ISOTROPIC HYPERELASTIC BODIES

UDC 539.3V. N. Solodovnikov

Deformation of isotropic hyperelastic bodies is considered. The solution of the problem of gravita-
tional compression of a sphere is given as an example of application of the theory.

Key words: isotropy, hyperelasticity, Jaumann stress rate, falling diagrams, gravitational com-
pression.

1. Rates of Squares of Basic Multiplicities of Extensions. In [1], in contrast to [2–4], it is proved that
the strain energy density for isotropic hyperelastic bodies can be defined as a function of only two rather than three
arguments: invariants of strain tensors. Components of the Jaumann stress-rate and strain rate tensors were used
in [5] to study diagrams of stress dependences on strain. We find the relation between the strain rates and the rates
of squares of basic multiplicities of extensions. We denote the Cartesian and curvilinear coordinates, radius vectors,
basis vectors, and metric tensor of the curvilinear coordinate system as yi, xi, R = yi ki, li = R,xi = yn

,xi kn,

and gij = li · lj at the initial time τ = 0 and as ŷi, x̂i, R̂ = ŷi ki, l̂i = R̂,x̂i = ŷn
,x̂i kn, and ĝij = l̂i · l̂j at

the current time τ ; ki are the basis vectors of the Cartesian coordinate system; u = R̂ − R = ui li = ûi l̂i and
v = u̇ = v̂i l̂i are the vectors of displacements and displacement rates; the dot indicates differentiation with respect
to the time τ (in static problems, any other monotonically increasing parameter determining material deformation
can be used instead of τ). We also use the basis vectors of the corresponding coordinate systems: R̂,xi = li + un

,i ln

and R,x̂i = l̂i − ûn
;i l̂n. The indices i, j, m, and n take the values 1, 2, and 3; summation from 1 to 3 is performed

over repeated indices; the variables in the subscript after the comma indicate partial differentiation; the subscripts i

after the comma or semicolon denote covariant differentiation with respect to xi and x̂i, respectively (u,xi = un
,i ln

and u,x̂i = ûn
;i l̂n).

Let the main axes of the Almansi strain tensor [1] ê = êij l̂
il̂j at the current time τ have directions of the

basis vectors of the Cartesian coordinate system km and turn in the course of deformation with an angular velocity
Ω̂ = Ω̂iki, though remaining mutually orthogonal. After a small time period, at the time τ + ∆τ , the axes have
the following directions with accuracy to (∆τ)2:

K̂
(m)
τ+∆τ = km + Ω̂× km∆τ = km + (knΩ̂l − klΩ̂n)∆τ

[the indices m, n, and l take the values of an even permutation of 1, 2, and 3; the quantities with the index (m)
refer to the axis with the direction km at the time τ ; small terms of the order (∆τ)2 are neglected]. Elementary
material fibers ki dŷi passing at the time τ along the main axes of the Almansi strain tensor ê (no summation over
i is performed) occupy the positions (R̂−u),ŷi dŷi at the initial time, are mutually orthogonal, and pass along the
main axes of the Green strain tensor e = eijl

ilj . The ratios of the squared lengths of these fibers in the current
and initial states are the squares of the main multiplicities of extensions εi = |(R̂−u),ŷi |−2. We consider the fibers
dL̂

(m)
τ+∆τK̂

(m)
τ+∆τ = (R̂ + v∆τ),x̂i dx̂i(m) of length dL̂

(m)
τ+∆τ passing along the main axes at the time τ + ∆τ . In the

expansion of these vectors with respect to the basis l̂i, we obtain the equalities

dx̂i(m) + (v,x̂j · l̂i)∆τdx̂j(m) = [x̂i
,ŷm + (x̂i

,ŷnΩ̂l − x̂i
,ŷlΩ̂n)∆τ ] dL̂

(m)
τ+∆τ . (1.1)

Rejecting terms containing ∆τ , we find dx̂i(m) = x̂i
,ŷm dL̂

(m)
τ+∆τ . Substituting these values into the terms with ∆τ

in (1.1), we find the increments of coordinates with accuracy to (∆τ)2:
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dx̂i(m) = {x̂i
,ŷm + [x̂i

,ŷnΩ̂l − x̂i
,ŷlΩ̂n − (v,ŷm · l̂i)]∆τ} dL̂

(m)
τ+∆τ .

At the time τ , the considered fibers have the form l̂i dx̂i(m) = [km + (knΩ̂l − klΩ̂n − v,ŷm)∆τ ] dL̂
(m)
τ+∆τ ; the

form of the fibers at the initial time τ = 0 is

(R̂− u),x̂i dx̂i(m) = {(R̂− u),ŷm + [(R̂− u),ŷnΩ̂l − (R̂− u),ŷlΩ̂n − (v,ŷm · kj)(R̂− u),ŷj ]∆τ} dL̂
(m)
τ+∆τ . (1.2)

The ratios of the squares of their lengths specified at the time τ + ∆τ to the initial lengths εm(τ+∆τ) = dL̂
(m) 2
τ+∆τ |(R̂

− u),x̂i dx̂i(m)|−2 are the squares of the main multiplicities of extensions at the considered material point at the
time τ + ∆τ . Using the Cartesian components of the strain-rate tensor η̂ij = [(v,ŷi · kj) + (v,ŷj · ki)]/2, we obtain
the expressions εm(τ+∆τ) = εm(1 + 2η̂mm∆τ). The rates of the squares of the main multiplicities of extensions are
found through the limiting transition

ε̇m = lim
∆τ→0

1
∆τ

(εm(τ+∆τ) − εm) = 2εmη̂mm. (1.3)

Thus, in the Cartesian coordinate system with the coordinate axes directed along the main axes of the
Almansi strain tensor, the values of diagonal components of the strain-rate tensor are calculated by the formulas [6]
η̂mm = ε̇m/(2εm). The quantities ε̇m are independent of the velocity of revolution of the main axes and are also the
rates of the squares of multiplicities of extensions of material fibers passing along these axes at the time τ . Indeed,
during the period from the time τ to the time τ + ∆τ , the fibers km dŷm (no summation over m is performed) pass
to the positions (R̂ + v∆τ),ŷm dŷm. The ratios of the squared lengths of these fibers at the times τ + ∆τ and τ

are equal to the ratios of their squared multiplicities of extensions at these times |(R̂ + v∆τ),ŷm |2 = εm(τ+∆τ)ε
−1
m

= 1+2η̂mm∆τ . Directing ∆τ to zero, we find the same values of ε̇m as in (1.3). From the condition of orthogonality
of the vectors (1.2), we determine the velocity of revolution of the main axes Ω̂l = ωl + (εm + εn)(εm − εn)−1η̂mn

(ω = ωiki is the velocity of revolution of the neighborhood of the material point as an absolutely solid integer;
ωl = [(v,ŷm · kn)− (v,ŷn · km)]/2).

2. Stress Rates. Let the main axes of the Cauchy stress tensor σ̂ = σ̂ij l̂il̂j at the time τ have the
directions km and, remaining mutually orthogonal, turn with an angular velocity Ω̃ = Ω̃i ki. Then, at the time
τ + ∆τ , with accuracy to (∆τ)2, the axes have the directions N̂

(m)
τ+∆τ = km + (knΩ̃l − klΩ̃n)∆τ (the indices m,

n, and l take the values of an even permutation of 1, 2, and 3). We consider material sites that have the normals
N̂

(m)
τ+∆τ and areas dŜ

(m)
τ+∆τ at the time τ + ∆τ . Assuming that the normals to these material sites at the time τ

are km in the first approximation, we find [5] d
˙̂
S

(m) = (J−1J̇ − η̂mm)dŜ(m) and ˙̂
N

(m) = η̂mmkm − (v,x̂i · km)l̂i,
where J is the ratio of volumes of material particles in the current and initial states (Jacobian of transformation
of the initial Cartesian coordinates of material points to the current coordinates); J̇ = J η̂i

i . Using the formulas

dŜ
(m) = dŜ

(m)
τ+∆τ − d

˙̂
S

(m) ∆τ and N̂
(m) = N̂

(m)
τ+∆τ −

˙̂
N

(m)∆τ , we find the areas and normals to the sites at the
time τ with accuracy to (∆τ)2:

dŜ(m) = [1− (J−1J̇ − η̂mm)∆τ ] dŜ
(m)
τ+∆τ ,

N̂ (m) = (1− η̂mm∆τ)km + [knΩ̃l − klΩ̃n + (v,x̂i · km)l̂i]∆τ.
(2.1)

The areas and normals dS(m) and N (m) = N
(m)
i li at the initial time τ = 0 are found from the equality [5]

N (m)J dS(m) = (N̂ (m) · R̂,xi)li dŜ(m), where

N
(m)
i =

dŜ(m)

JdS(m)
{(1− η̂mm∆τ)ŷm

,xi + [Ω̃lŷn
,xi − Ω̃nŷl

,xi + (v,xi · km)]∆τ}. (2.2)

We determine the forces acting per unit area of the considered material sites at the time τ + ∆τ :

q̂
(m)
τ+∆τ = (σij + σ̇ij∆τ)(R̂ + v∆τ),xiN

(m)
j dS(m)(dŜ

(m)
τ+∆τ )−1.

We pass from the second symmetric Piola–Kirchhoff stress tensor σ = σij lilj to the Cauchy stress tensor σ̂mn

= J−1σij x̂m
,xi x̂n

,xj and introduce the tensor ŝ = ŝmn l̂ml̂n (ŝmn = J−1σ̇ij x̂m
,xi x̂n

,xj ). Using (2.1) and (2.2) and
neglecting small terms of the order of (∆τ)2, we obtain the expressions

q̂
(m)
τ+∆τ = {(1− J−1J̇∆τ)ŷm

,x̂i + [Ω̃lŷn
,x̂i − Ω̃nŷl

,x̂i + (v,x̂i · km)]∆τ}σ̂ij l̂j + (σ̂ijv,x̂i + ŝij l̂i) ŷm
,x̂j ∆τ

(the indices m, n, and l take the values of an even permutation of 1, 2, and 3). In the Cartesian coordinate system
with the coordinate axes directed along the main axes of the tensor σ̂, the expressions take the form
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q̂
(m)
τ+∆τ = (1− J−1J̇∆τ)σ̂mkm + [Ω̃lσ̂nkn − Ω̃nσ̂lkl + (v,ŷi · km)σ̂iki + σ̂mv,ŷm + ŝmi ki]∆τ, (2.3)

where ŝ = ŝij kikj .
The projections of vectors (2.3) onto the normals and tangents to the sites where they are determined,

Qij
τ+∆τ = q̂

(i)
τ+∆τ · N̂

(j)
τ+∆τ are the stresses acting on these sites and satisfying the conditions Qij

τ+∆τ = Qji
τ+∆τ .

The normal stresses acquire the values of the main components of stresses at the time τ + ∆τ : Qii
τ+∆τ

= σ̂i(τ+∆τ) = σ̂i + Σ̂ii∆τ (no summation over i is performed). Under the condition of zero tangent stresses
Qmn

τ+∆τ = [Σ̂mn + (σ̂n − σ̂m)(Ω̃l − ωl)]∆τ = 0 (the indices m, n, and l take the values of an even permuta-
tion of 1, 2, and 3), we find the velocity of revolution of the main axes Ω̃l = ωl + (σ̂m − σ̂n)−1Σ̂mn. Here,
Σ̂ii = ŝii + σ̂i(2η̂ii − J−1J̇), Σ̂mn = ŝmn + (σ̂m + σ̂n)η̂mn are the components of the Jaumann stress-rate tensor
Σ̂ = Σ̂ijkikj [7] in the Cartesian coordinate system with the coordinate axes directed along the main axes σ̂. The
diagonal components Σ̂ii take the values of rates of the main stress components:

Σ̂ii = ˙̂σi = lim
∆τ→0

1
∆τ

(σ̂i(τ+∆τ) − σ̂i). (2.4)

In an isotropic hyperelastic body, the main stress components are determined from the equations [5]

σ̂i = µ̂ εi (εi − χ̂) + p, (2.5)

where µ̂ = βI−2
1 J−1; β = Ψ,Υ; p = Ψ,J = (σ̂m + σ̂n + σ̂l)/3 is the hydrostatic pressure; Ψ = Ψ(Υ, J) is the strain

energy density; χ̂ = 2I1(Υ + 1/3);

J = (εmεnεl)1/2, Υ =
ε2

m + ε2
n + ε2

l

(εm + εn + εl)2
− 1

3
, I1 =

1
2

(εm + εn + εl)

(the indices m, n, and l take the values of an even permutation of 1, 2, and 3). From the formulas given above
for the components of the Jaumann stress-rate tensor, we obtain the following expressions for isotropic hyperelastic
bodies:

Σ̂ii = [(J̇β,J + Υ̇β,Υ)β−1 − 2I−1
1 İ1 − J−1J̇ + 2η̂ii](σ̂i − p)

+ µ̂εi(2εiη̂ii − ˙̂χ) + J̇p,J + Υ̇p,Υ. (2.6)

Substituting η̂ii = ε̇i/(2εi) into (2.6), we obtain the values Σ̂ii = ˙̂σi, which are also obtained by differentiation of
σ̂i in (2.5) with respect to τ . The conditions of falling diagrams of stresses versus strains Σ̂iiη̂ii < 0 used in [5]
(no summation over i is performed) can now be represented in the form ˙̂σiε̇i < 0 [8–12]. Therefore, the diagram of
the dependence of σ̂i on εi is assumed to be falling if the extension of the fiber passing along the considered main
axis is accompanied by a decrease in stress acting in this fiber and if fiber shrinkage is accompanied by an increase
in stress. Note, the matrix of coefficients at ε̇i in (2.6) is not symmetric, in contrast to the symmetric matrix in
equations for the rates of the main components of the Piola–Kirchhoff stress tensor σ: σi = 2Ψ,εi = Jε−1

i σ̂i and
σ̇i = 2Ψ,εiεm ε̇m.

The extradiagonal components of the Jaumann stress-rate and strain-rate tensors Σ̂mn and η̂mn multiplied
by ∆τ are increments of shear stresses and shear strains on material sites where the main stress components act at
the time τ , whereas tangential stresses and shear strains equal zero. Therefore, the resultant increments are also
stresses and strains at the time τ + ∆τ . In isotropic hyperelastic bodies, they are related as

Σ̂mn = Blη̂mn, Bl =
µ̂(εm + εn)
εm + εn + εl

[2εmεn + (εm + εn)εl − ε2
l ]

(the indices m, n, and l take the values of an even permutation of 1, 2, and 3).
In the initial nondeformed state of the material, we have Bl = 2µ0 > 0, where µ0 is the shear modulus.

For the shear stresses and shear strains caused by the rates Σ̂mn and η̂mn to have an identical direction, the
coefficients Bl should be positive. The conditions Bl > 0 and β > 0 yield the inequalities [5]

εl < (εm + εn)/2 + [(εm + εn)2/4 + 2εmεn]1/2, (2.7)

independent of the form of the function Ψ(Υ, J). According to (2.7), the inequalities σ̂m < σ̂n < σ̂l should be
satisfied for the main stress components if εm < εn < εl. Note, by virtue of (2.5) and expressions for Σ̂mn, the
found velocities of revolution of the main axes of the tensors σ̂ and ê coincide: Ω̂ = Ω̃.

3. Geometry of the Region Determined by Inequalities (2.7). In a three-dimensional space with
the Cartesian coordinates εi > 0, inequalities (2.7) determine a cone whose apex is located in the origin εi = 0.
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We find the cross section of this cone by the deviatoric plane εm + εn + εl = 3a (the indices m, n, and l take
the values of an even permutation of 1, 2, and 3), which is located at a distance a

√
3 from the origin. The points

of the deviatoric plane whose coordinates satisfy the inequality εi > 0 are located inside an equilateral triangle
(Fig. 1) with apices on the coordinate axes and sides of length 3a

√
2 located in the coordinate planes. In what

follows, these sides are called the lines εi = 0. We introduce a polar coordinate system (b, α) with the origin at
the center of the triangle (b is the radius and α is the polar angle). In this coordinate system, εl = a(1 + υ cos α),
εm = a[1 − υ cos(α + π/3)], εn = a[1 − υ cos(α − π/3)], where 0 6 υ = (b/a)

√
2/3 6 2; 0 6 Υ = υ2/6 6 2/3;

b = [(εm − a)2 + (εn − a)2 + (εl − a)2]1/2; for 1 < υ 6 2, the angles vary in the intervals −π + α∗ 6 α 6 −π/3−α∗,
−π/3 + α∗ 6 α 6 π/3 − α∗, π/3 + α∗ 6 α 6 π − α∗ [α∗ = arccos (1/υ)]. With the use of these expressions, the
equality in (2.7) εl = (εm + εn)/2 + [(εm + εn)2/4 + 2εmεn]1/2 transforms to cos α = 1/υ − υ/2 and defines, in the
Cartesian coordinates X = b cos α, Y = b sinα, the arc of the circumference (X +a

√
3/2)2 +Y 2 = 9a2/2 connecting

the middle points of the lines εm = 0 and εn = 0, whose center (X = −a
√

3/2, Y = 0) is located at the mid-point
of the line εl = 0. Thus, in the deviatoric plane, inequalities (2.7) determine a curvilinear triangle whose sides are
arcs of circumferences (Fig. 1). For the inequalities Bl > 0 to be satisfied, the values of the squares of the main
multiplicities of extensions εi should be located in the region inside the conical surface with generatrices crossing
deviatoric planes on the sides of curvilinear triangles.

4. Gravitational Compression of a Sphere. We determine spherically symmetric equilibrium states of
the sphere. We denote the initial and current radial coordinates of the material points as r and r̂ [r̂ = r̂(r) and
0 6 r 6 R]; ε1 = (r̂,r)2 and ε2 = (r̂/r)2 are the squares of the main multiplicities of extensions; σ̂1 and σ̂2 are
the radial and circumferential stresses; J = ε2ε

1/2
1 ; the inequalities r̂ > 0 and r̂,r > 0 are satisfied. The density of

the sphere material changes from the initial constant value ρ to ρ̂ = ρJ−1 in the compressed state. We obtain the
equilibrium equation

(r̂2σ̂1),r − σ̂2(r̂2),r + qr2 = 0. (4.1)

At each material point, the action of gravitational forces from the side of the entire sphere reduces to the force of
attraction q = −GρMr̂−2 determined per unit of the initial volume of the material and directed toward the sphere
center [G is the gravitational constant and M = (4/3)πr3ρ]. Zero stress σ̂1 = 0 is set on the surface r = R; in the
center of the sphere, we have ε1 = ε2 for r = 0.

The material of the sphere is assumed to be isotropic and hyperelastic, with the constitutive function [5]
Ψ = βΥ + 0.5KJ−1(J − 1)2 continuously transforming, as the strain tends to zero, to the constitutive function of
Hooke’s law, with the same two constants of the material as those in Hooke’s law: β = 9µ0/4, µ0 = E0/(2(1 + ν)),
and K = E0/(3(1− 2ν)) (E0 and ν are Young’s modulus and Poisson’s ratio). For σ̂2 = σ̂3 and ε2 = ε3, Eq. (2.5)
yields

σ̂1 =
8βε

1/2
1 (ε1 − ε2)

(ε1 + 2ε2)3
+ p, σ̂2 =

1
2

(3p− σ̂1), p =
K

2

(
1− 1

J2

)
. (4.2)

85



_1.0

_0.8

_1.2

_0.6

_0.4

_0.2

0

0.20 0.4 0.6 0.8 1.0 x

s2/b

Fig. 2

According to (4.2), the sphere surface is characterized by the states described by the functions γ = 16ξ(ξ2

− 1)/(3 − ξ)3, J = γ/c + [(γ/c)2 + 1]1/2, c = K/β = 8(1 + ν)/(27(1 − 2ν)), ε1 = J2/3((1 + ξ)/(1 − ξ))2/3, ε2

= J2/3((1−ξ)/(1+ξ))1/3, p = βγ/J , σ̂1 = 0, and σ̂2 = 3p/2 depending on the parameter 0 6 ξ = (ε1−ε2)/(ε1 +ε2)
6 1 (in [5], ξ has the opposite sign). The absolute value of the stress σ̂2 increases and reaches a maximum (of the
order of the shear modulus µ0) at ξ = ξ∗ = (2

√
7 + 1)/9, after which σ̂2 → 0 and J → 1 as ξ → 1 (solid curve

in Fig. 2). (The curves in Figs. 2 and 3 were obtained for ν = 0.3.) For ξ > ξ∗, the condition of a decreasing
dependence of stress on strain is fulfilled: σ̂2,ξ ε2,ξ < 0.

At the time ξ = ξ∗∗ = 2
√

3 − 3 < ξ∗, solutions of Eqs. (2.5) with deformation asymmetric relative to
the radial beam branch off from this solution at ε2 = ε3; in these solutions, σ̂1 = 0, σ̂2 = σ̂3 = 3βγ1/(2J),
B1 = 0, γ1 = −4ζ/(3 +

√
1 + ζ)2, J = γ1/c + [(γ1/c)2 + 1]1/2, ε1 = ζ1(1 +

√
1 + ζ ), ε2 = ζ1(1 −

√
1− ζ/2 ),

ε3 = ζ1(1 +
√

1− ζ/2 ), ζ1 = (ε2 + ε3)/2 = (2J2/(ζ(1 +
√

1 + ζ ))1/3, the value of ζ decreases from 2 to 0.
Asymmetric deformation occurs with decreasing stress σ̂2, which is lower than that in the solution with ε2 = ε3

(dashed curve in Fig. 2). The values of the parameter ξ < ξ∗∗ are set below for spherically symmetric equilibrium
states of the sphere. The values of ξ∗ and ξ∗∗ are independent of material constants.

We substitute q = −(4/3)πGρ2rε−1
2 and the expressions for σ̂1, σ̂2 from (4.2) into (4.1). Using the equation

ε2,r = (2/r)(
√

ε1ε2 − ε2), we obtain the system of first-order differential equations in dimensionless variables

ε1,r′ +
1
f1

(f2

r′
− Ar′

ε2

)
= 0, ε2,r′ =

1
r′

f3 (4.3)

with respect to two sought functions ε1 and ε2, where

f1 =
4ε2(11ε1ε2 − 3ε2

1 − 2ε2
2)√

ε1(ε1 + 2ε2)4
+

c

2ε2
1ε2

, f3 = 2(
√

ε1ε2 − ε2),

f2 =
(8
√

ε1ε2(4ε2 − 7ε1)
(ε1 + 2ε2)4

+
c

ε1ε2
2

)
f3 +

24ε1
√

ε2(ε1 − ε2)
(ε1 + 2ε2)3

,

with constants c = 8(1+ν)/(27(1−2ν)) and A = 4Gπρ2R2/(3β) for 0 6 r′ = r/R 6 1. The solution of system (4.3)
that satisfies the boundary conditions formulated above is calculated by the Runge–Kutta method as a solution of
the problem with initial conditions set for r′ = 1. To eliminate uncertainty in the sphere center, the calculations
are performed only on the sector from r′ = 1 to r′ = r′δ = 0.0001. The value of ξ is set, and the values of ε1

and ε2 on the sphere surface are calculated using the above-given formulas. Solving system (4.3) with specified
initial conditions from r′ = 1 to r′δ, we use an iterative procedure to find the value of A providing calculation of
the solution up to the point r′δ where the equality ε1 = ε2 is satisfied with sufficient accuracy. It should be noted
that the value of A is to be determined rather accurately (10–12 digits after the point in the representation of A to
satisfy the equality ε1 = ε2 at the point r′δ with accuracy to 10−7). As a result, we find the solution with the value
of A for which the specified value of ξ is obtained.
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Figure 3a–c shows the dependences of the squares of the main multiplicities of extensions ε1 and ε2, the
ratios of densities ρ̂/ρ, and the stresses σ̂1/β and σ̂2/β versus h = 1− r′ for ν = 0.3, ξ = 0.3, and A = 2.2921373248
[several last digits in the value of A can be different if another variable is taken as independent in (4.3), e.g., r′2

instead of r′].
It should be noted that linearization of (4.1), (4.2) with the use of the equalities ε1 = 1+2e1 and ε2 = 1+2e2

under the condition of small strains e1 and e2, displacements u = r̂− r, and their derivatives u,r leads to equations
formulated in the linear theory of elasticity:

σ1,r +
2
r

(σ1 − σ2)−A
βr

R2
= 0, e1 = u,r, e2 =

u

r
,

σ1 =
8β

9(1− 2ν)
[(1− ν)e1 + 2νe2], σ2 =

8β

9(1− 2ν)
(e2 + νe1).

From the solution of these equations with the boundary conditions σ1 = 0 on the surface and u = 0 at the center
of the sphere, we find the stresses

σ1 =
(3− ν)βA

10(1− ν)

( r2

R2
− 1

)
, σ2 =

βA

10(1− ν)

[
(1 + 3ν)

r2

R2
− (3− ν)

]
,

which are lower than in the nonlinear theory; this fact is explained by the neglect of the changes in areas of material
sites and distances between material points upon sphere compression. Thus, for ν = 0.3 and A ≈ 2.29, the pressure
at the center of the sphere is σ1/β = σ2/β ≈ −0.88, which is almost three times lower than that in Fig. 3c.
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3. K. F. Chernykh, Nonlinear Theory of Elasticity in Machine-Building Calculations [in Russian], Mashinostroenie,

Leningrad (1986).
4. S. K. Godunov, Elements of the Mechanics of Continuous Media [in Russian], Nauka, Moscow (1978).
5. V. N. Solodovnikov, “Stability of deformation of isotropic hyperelastic bodies,” J. Appl. Mech. Tech. Phys., 42,

No. 6, 1043–1050 (2001).
6. A. I. Lur’ye, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).
7. S. N. Korobeinikov, Nonlinear Deformation of Solids [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk

(2000).
8. R. Hill, “Some issues of the behavior of isotropic elastic bodies under superposition of small strain on fi-

nite strain,” in: Problems in Mechanics of Deformable Solids: To the 60th Anniversary of Academician
V. V. Novozhilov [in Russian], Sudostroenie, Leningrad (1970), pp. 459–466.

9. K. F. Chernykh, Introduction into Anisotropic Elasticity [in Russian], Nauka, Moscow (1988).
10. C. Truesdell, First Course in Rational Continuum Mechanics, Johns Hopkins Univ., Baltimore–Maryland

(1972).
11. R. Hill, “On constitutive inequalities for simple materials. 1,” J. Mech. Phys. Solids, 16, No. 4, 130–135 (1968).
12. K. F. Chernykh, “Constitutive inequalities of elastic bodies,” in: Mechanics of Continuous Media and Associated

Problems of Analysis: To the 80th Anniversary of Academician N. I. Muskhelishvili [in Russian], Nauka, Moscow
(1972), pp. 623–633.

88


